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ABSTRACT

We have evaluated the Green-Kubo relations for the viscosities of abiaxial nematic liquid
crystal by performing equilibrium molecular dynamics simulations. The viscosity varies by
more than two orders magnitude depending on the orientation of the directors relative to the
stream lines. The molecules consist of nine fused Gay-Berne oblates whose axes of revolution
are parallel to each other and perpendicular to the line joining their centres of mass. Thisgivesa
biaxial body the length to width to breadth ratio of whichis5:1:0.4. The numerical evauation
of the Green-Kubo relations for the viscositiesis facilitated by the application of a Gaussian
director constraint algorithm that makes it possible to fix the directorsin space. This does not
only generate an inertial direcor based frame but also a new equilibrium ensemble. In this
ensemble the Green Kubo relations for the viscosities are smple linear combinations of time
correlation function integrals whereas they are complicated rational functionsin the conventional

canonical ensemble.
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1. INTRODUCTION

Transport phenomenain liquid crystals are much richer than in isotropic fluids. The
reason for thisisthat the lower symmetry of the liquid crystals allows cross couplings between
thermodynamic forces and fluxes that are forbidden in isotropic fluids. The diffusion
coefficients and the thermal conductivities are second rank tensors with two or three
independent components depending on whether the symmetry isuniaxia or biaxial. The
viscosity isafourth rank tensor with 81 independent viscositiesin the general case. In an
isotropic fluid there are three independent components: the shear viscosity, the volume viscosity
and the vortex viscosity. In uniaxia systemsthere are seven viscosities and in biaxial systems
there are fifteen. There are cross couplings between tensors of different rank and parity. For
example, the symmetric traceless strain rate cross couples with the antisymmetric pressure. This
givesriseto director alignment phenomenain shear flows.

Thefirst evaluation of the viscosities of aliquid crystal model system was done by Baalss
and Hessin 1986 [1]. They performed a shear flow simulation of a perfectly aligned nematic
iquid crystal. In order to decrease the computational work they devised a mapping of the liquid
crystal onto an isotropic Lennard-Jones fluid. Equilibrium fluctuation relations for the
viscosities of uniaxial nematic liquid crystals were first derived by Forster using projector
operator techniques [2]. The same relations were derived by Sarman and Evans by applying the
SLLOD equations of motion for planar Couette flow and linear response theory [3]. These
relations were evaluated numerically for the Gay-Bernefluid [4]. In alater work we devised a
Gaussian congtraint algorithm that made it possible to fix the director in space [5]. This makes a
director based frame an inertial frame. One also generates anew equilibrium ensemble. It turns
out that the Green-Kubo relations for the various viscosity coefficients are linear combinations
of time correlations function integralsin this ensemble whereas they are complicated rational
functions in the conventional canonical ensemble. The Green-Kubo relations for the various
viscosity coefficients have recently been generalised to biaxial nematic liquid crystals[6]. In this
work we use these relations to cal culate some of the viscosities of abiaxial liquid crystal. The

model system consists of molecules composed of nine Gay-Berne oblates[7]. Their axes of
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revolution are paralel to each other and perpendicular to the line joining their centres of mass.

The length to width to breadth ratio is 5:1:0.4. This system has been shown to form biaxial

nematic phases at high densities.

2. THEORY
The degree of ordering in abiaxial liquid crystal is described by two second rank order
parameters [8,9]
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whereq, f andy arethe Euler anglesrelative to alaboratory based coordinate system. The
first parameter isthe well-known uniaxial order parameter. It is zero in isotropic phases and
finitein uniaxialy or biaxially symmetric phases. The other parameter isthe biaxial order
parameter. It iszero in isotropic and uniaxia phases and it isfinitein biaxial phases. The order
parameters can be defined more clearly if we form symmetric tracel ess order tensors based on

the various principa molecular axes,
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where N isthe number of particles, 1 isthe unit second rank tensor and S is one of the
principal axes U, Vv; or w; of the molecule, see Fig. 1. This gives three different order tensors,
Q™, Q" and Q™. Using these definitions the order parameters can be rewritten as

Qe ={e, " &, (2.39)
and
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where (e, e, €,) isthe base of alaboratory based coordinate system. The parameter Q%O IS

the largest eigenvalue of the order tensor Q™. In isotropic phases this parameter is zero and it
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isfinitein uniaxial and biaxial phases. The parameter ng iszeroinisotropic and uniaxial

phases and it isfinite in biaxial phases.
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Fig. 1
Planar projections of the molecular model. a) The U -axis s perpendicular to the plane of

the paper. b) The v -axis s perpendicular to the plane of the paper.

In order to make sense of these order parameters we have to define the coordinate system.
One calculates the three order tensors Q™', Q" and Q™. Then one computes the largest
eigenvalue of each of them. One defines the elgenvector pertaining to the largest of these

eigenvalues, nq, as the x-direction. The eigenvector corresponding to the second largest
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eigenvalue, n,, is defined as the y-direction. The z-direction is given by n3 which is the

eigenvector corresponding the smallest eigenvalue. These eigenvectors are independent within
certain limits and they are not strictly orthogonal. They are constantly diffusing on the unit
sphere at angular velocities defined as W, = n,,” n,,,, m=1,2,3. This problem can be solved by
applying the Gaussian director constraint algorithm, described below, to fix the directors.

We are going to use amodel system consisting of rigid bodies. The equations of motion

for such asystem are,

G = (2.5a)
and
pi =F —ap;, (2.5b)
where
N N
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g; and p; are the position and the linear momentum of particlei, M isthe molecular mass, F; is
the force on particlei due to interactions with other particles. The parameter a isa Gaussian
thermostatting multiplier that is determined in such away that the trandational kinetic energy
becomes a constant of motion [10]. An important property of this thermostat isthat it does not
exert any torque on the system. It does consequently not interfere with the director alignment or

rotation. In angular space we employ,

S =w S (2.62)
and the Euler equations,
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theinertiatensor, § equals U, V; or w;, the principal axes of moleculei, wy; isthe molecular

angular velocity, G, isthe torque due to interactions with other particles, I,,,, {a=u,v,w}, is



the moment of inertiaaround the a-axis. Do not confuse the subscript 'a’ with the
thermostatting multiplier a. The subscript ‘p’ denotes the principa frame. The Gaussian
constraint multiplier | |, keeps W), equal to zero and thereby the director orientations are fixed
inspace. Thel ;' s are determined by the requirement that

W,,,=0, m=12,3. (3.2)
Thisis actually six independent equations because there are two independent components of
each of the W,,;s and the| ;' s. Provided theinitial values of the W, s are zero they will remain
zero at al times and the directors will remain fixed.

The ab element of the pressure tensor is denoted by p,, . We employ the Irving-

Kirkwood [14] definition of the pressure,

N
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wherer; =r;- r; and F; istheforce acting on particlei due to interactions with particlej.

3. MODEL SYSTEM AND TECHNICAL DETAILS

Our molecules consist of astring of Gay-Berne oblates [8] where the axes of revolution of
the oblates are parallel to each other and perpendicular to the line joining their centres of mass.
In order to decrease the number of interactions we replace the Lennard-Jones core by a purely

repulsive 1/r18 core. The site-site interaction potential becomes,
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wherer, ,p isthe distance vector from the centre of mass of interaction sitea of molecule 1 to
the centre of mass of interaction siteb of molecule 2, T, 5, isthe unit vector in the direction of
M4 2b0r T1a 2p iSthelengthof ry, , and u; and U, arethe unit vectors parallel to the axis of

revolution of the oblates of molecule 1 and 2 respectively. The parameter s isthe length of the

major axis of the oblate. The strength and range parameters e(f »p,,U;,U,) and



S (F1a 26, Uy, Up) aregiven by
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The parameter c® (k2-1)/(k2+1), where k istheratio of the axis of revolution and the axis
perpendicular to the axis of revolution and c® (k (2-1)/(k ¢~/2+1), where k ¢ isthe ratio of the
potential energy minima of the side to side and the end to end configurations. The depth of the
potential minimum is given by e,. Note that we use purely repulsive potentials, so there are no
potential minima. However, we keep the values of k ¢, c¢and e, adjusted for a L ennard-Jones
potential when we replace it by a purely repulsive potential in Eq. (3.1). The molecules consist
of nineinteraction sites. Their axis vectors U; are parallel to each other and perpendicular to the
line joining the centres of mass. The distance between the centres of mass of the oblatesissy/2,
see Fig. 1. The parametersk and k ¢ have been given the values 0.40 and 0.20 respectively.
This gives alength to breadth to width ratio of 5:1:0.40. The numerical resultsin thiswork are
expressed in units of so, M and t =s5(M/ey)Y/2. The moment of inertiaaround the w; axisis
equal to 0.25Ms ;2. The moments of inertia around the U; and the v; -axes are equal to

1.8Ms 42. The equations of motion have been integrated by afourth order Gear predictor
corrector with atime step of 0.001t. The cutoff radius beyond which the interaction potential
and the interaction forces are set equal to zero is 1.55 (Iy, o, Uy, U,) . Thusthe cutoff radiusis
orientation dependent. The expressions for the forces and the torques, which are rather
complicated, are givenin ref. [11]. We used cubic boundary conditions. We employed 2025

molecules which together contain 18,225 oblate Gay-Berne interaction sites.



4. CALCULATIONS, RESULTS AND DISCUSSION

We have evaluated the viscosities of thismodel system at areduced density of 0.19 and a
reduced temperatur of 1.00. Thisisvery complicated and the theory is described elsewhere
[12]. However, it is very easy to define and physically interpret effective viscosities

ap,, N= - hg E (4.1)

where u, isthe velocity inthe n, direction that variesin then,, direction in adirector based
coordinate system. Then g direction is perpendicular to the vorticity plane, seefig. 2. Thus

Tu, Tix, isthe strain rate, h isthe effective viscosity and ap,pfiistheab  element of the
pressure tensor. This gives six different viscosities. Each of the three directors can be
perpendicular to the vorticity plane and either of the two remaining directors can be
perpendicular to the stream lines. If {a,b,g} isan even permutation of {1,2,3} the viscosity is
denoted h g and it isdenoted h_q for odd permutations. They can be expressed in terms of time

correlation functions of the various elements of the pressure tensor,

hy = hogozw + 911w + Dogrw (4.29)

h.1=hogoaw + 911w - 2No31.w (4.2b)

hy = hg131.w + 920w + 2310y (4.20)

h_2=hgzi31w + 922w - 2310w (4.2d)

h3 =210 w + 93w + 23w (4.2e)
and

h_3=N0w + Gazw - 23w (4.2f)

We use a shorthand notation for the time correlation functions,

Mapg-w® BV QY ds{5S, (9RS (0 43
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\¥ o)

Gang;w ° bV Q AS(P3(9) B (O], (4.3b)
\¥ o

hang w ® BV ds{i5 (9PG(0) (4.30)

and
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where

o 1 1
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the symmetric tracel ess pressure and

a_ 1
Py =- _Zeabgpgb

the antisymmetric pressure. The subscript eq denotes an equilibrium ensemble. The subscript
eq;W denotes an equilibrium ensemble where Wis forced to be zero. If a =b and g=d the
correlation functions h,, areindependent of whether Wis constrained or not, i. e. the normal
stress difference correlation functions are ensembl e independent. The TCHI’ sinvolving the
antisymmetric pressure are zero if W is unconstrained. Note that h,pg. \w = 9ga b, w because the

pressure tensor is invariant under time reversal.

u=n_gr,

Fig. 2
A gtrainrate Nu =gn n,, isapplied. Thedirector n,, isparalel to the stream lines. The

velocity variesinthe n, direction. The director ny is perpendicular to the vorticity plane and
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the plane of the paper. The axis paralld to this director has been omitted. We denote the

effective viscosity hg if abgisan even permutation of {1,2,3} andh_g for odd permutations.

The various viscositiesare givenin tablel. Wehaveh_, > h; > hz>>h_3» h_. > h,.
Table . The Miesowicz viscosities at areduced density of 0.19 and a reduced temperature of

1.00.

viscosity  estimate

hy 9.7+0.3
h 0.57+0.06
h, 0.19+0.005
h., 25+3

hs 4.9+0.3

h s 0.59+0.01

Theratio of the smallest and the largest viscosity coefficients is more than two orders of
magnitude. The effective viscosity is consequently very orientation dependent. It iseasy to
redisethat h_, isthelargest viscosity because thisisthe effective viscosity when n, and thereby
the U; axesare paralle to the stream lines and n5 and the w; axes are parallel to the vorticity
plane and perpendicular to the stream lines, seefig. 3. Thismeansthat it is very hard for the
molecules to pass each other because the broadsides of the molecules face the stream lines and
hit each other. It isalso easy to realise that h, isthe smallest viscosity because in this orientation
ng and the w; axes are paralél to the stream linesand n, and u; are perpendicular to the stream
lines and parallel to the vorticity plane. This makesit very easy for the molecules to dide past

each other thus decreasing the viscosity.
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Fig. 3

Approximate orientation of the molecules when n, is perpendicular to the vorticity plane.
The symbols within square brackets pertain to the situation when n is parallel to the stream
lines. The effective viscosity ish_,. The symbols outside the square brackets pertains to the

case whennq isparallel to the stream lines. The effective viscosity ish ».

5. CONCLUSION

We have devised aliquid crystal model potential consisting of nine oblate Gay-Berne
interaction sites. Their axes of revolution are parallel to each other and perpendicular to theline
joining the centres of mass. The length to breadth to width ratio is 5:1:0.4. We have removed
the attractive part of the core of the Lennard-Jones core of the Gay-Berne potential and replaced
it by apurely repulsive 1/r18 potential in order to reduce the number of interactions. This makes
the system faster to simulate. Thisis useful when one wants cal culate transport properties
which often require very long simulation runs to converge.

In order to generate an inertia director based frame we use adirector constraint algorithm
that keeps the directors fixed and orthogonal. This constraint algorithm aso generates a new

equlibrium ensemble. Most time correlation functions and thermodynamic properties are the
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samein this ensemble asin the conventional canonical ensemble. An important exception isthe

Green-Kubo relations for the viscosities. They are linear combinations of time correlation
function integralsin the fixed director ensemble whereas they are complicated rational functions
in the conventional canonical ensemble.

At high densities our liquid crystal model system forms abiaxia nematic phase. We have
used the director constraint algorithm to evaluate the Miesowicz viscosities of this phase. They
can be regarded as the effective viscosities when one director is parallel to the stream lines, one
director is perpendicular to the vorticity plane and the last one is perpendicular to the shear
plane. There are six such viscosities. They were found to be highly orientation dependent. The

largest and the smallest viscosities differed by more than two orders of magnitude!
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